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SYSTEM IDENTIFICATION AND MODEL REDUCTION
FOR A SINGLE-LINK FLEXIBLE MANIPULATOR
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A new model reduction and updating technique is proposed and applied in modelling of
a single-link #exible manipulator. The Observability Range Space Extraction algorithm is
used to generate an initial overparameterized state-space model. The identi"ed model is
transformed into modal realization. The modal responses of individual modes are evaluated.
A new measure is proposed to quantify the contribution of individual modes to the total
responses. Using the proposed measure, a reduced order model is obtained by retaining the
most signi"cant modes. To improve model accuracy, either the reduced input or output
matrix can be recalculated by a proposed method. Several critical issues related to the
experimental identi"cation are addressed. Experimental identi"cation results are presented
to illustrate the proposed technique.
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1. INTRODUCTION

Identi"cation is the process of developing or improving a mathematical representation of
a physical system using experimental data. Identi"cation work can be classi"ed as three
types: modal parameter identi"cation, structural-model parameter identi"cation, and
control-model identi"cation [1]. In modal parameter identi"cation, the dynamics of
structures is characterized by modal parameters such as natural frequencies, damping
ratios, and mode shapes. Using the identi"ed modal parameters, additional processes can
be performed to obtain structural-model parameters such as mass, damping, and sti!ness
matrices. Control-model identi"cation "nds a parametric model to represent a system in
order to design a controller. In the context of this paper, identi"cation refers to the
control-model identi"cation.

During the past two decades, numerous techniques for control-model identi"cation have
been developed in the control literatures. The methods to identify discrete-time state-space
model have been receiving more and more attention as such a model is a popular choice for
computer control of linear time-invariant systems. If a pulse response is available, the
Eigensystem Realization Algorithm (ERA) can be directly applied to obtain the system
parameter matrices [2, 3]. The recursive form of the ERA is developed for the purpose of
on-line system identi"cation [4]. For general response data, the Observer/Kalman "lter
identi"cation algorithm (OKID) can be used and it consists of three steps, i.e., computation
of the observer Markov parameters, recovery of the system and observer gain Markov
parameters, and realization of a state-space model [1, 5]. The Observability Range Space
Extraction (ORSE) algorithm [6] is developed by generalizing the Q-Markov Covariance
Equivalent Realization (Q-Markov Cover) [7] and the ERA. The ORSE algorithm can
obtain a state-space model directly from general input/output data. Uni"cation of several
system realization algorithms is discussed in reference [8]. In essence, the ERA, OKID, and
022-460X/01/200867#25 $35.00/0 ( 2001 Academic Press
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ORSE methods have their roots in subspace model identi"cation (SMI) [9]. These
methods have been successfully applied in the identi"cation of large #exible space structures
[10, 11].

A common feature of the algorithms such as the OKID or ORSE is that the model must
be properly overparameterized in order to capture the dynamics of systems. This need arises
due to the e!ects of irregularities such as measurement noise and non-linearities of actual
systems. An overparameterized model contains both the system modes and computational
modes. The order of the estimated model must be reduced to eliminate the computational
modes and insigni"cant system modes. The reduced order model must be updated to
correct errors caused by truncation of some modes. A procedure for model reduction and
updating is proposed in reference [6]. The procedure employs the balanced realization (BR)
technique to transfer the model into a balanced form such that the importance of each mode
is indicated by its corresponding diagonal element of the joint Gramian matrix or Hankel
singular value [12]. Then the less important modes are eliminated to produce a lower order
model. Some problems have encountered when the BR technique is used to deal with
identi"ed models of the systems that contain both rigid and #exible modes. First, the BR
technique requires that the models be asymptotically stable. For systems that contain both
rigid and #exible modes, identi"ed models may not be stable. Second, the BR technique
judges the model quality in terms of the minimum error between the impulse responses of
the models. Such a criterion tends to overemphasize lightly damped modes in the
higher-frequency region. Third, determination of a threshold value for small Hankel
singular values is more or less a matter of subjective judgement.

For model updating, an iterative least-squares (LS) model updating algorithm is used in
reference [6]. The model to be updated is assumed to be su$ciently accurate so that the
prediction error of the model can be approximated by the product of the gradient matrix
and the parameter updating vector. The algorithm updates the elements of the parameter
matrices iteratively until the prediction error cannot be further reduced. The iterative LS
updating algorithm has a slow convergence because only the "rst order information is used.
In reference [13], optimized system identi"cation was achieved using sequential quadratic
programming iterations. It starts the iterations with the model identi"ed using the OKID
algorithm. The process can be considered as a model updating operation. The optimization
minimizes a non-linear function of many variables, i.e., the elements of the parameter
matrices. Hence, it can converge to local minima.

The "rst objective of this study is to apply the ORSE algorithm to an electro-mechanical
system that contains both rigid and #exible modes. Speci"cally, a single-link #exible
manipulator is used as a test-bed for such system. Identi"cation of #exible manipulators has
been studied by many researchers. In reference [14], an autoregressive moving average
(ARMA) model was used to model a single-link #exible manipulator. The recursive
least-squares (RLS) algorithm was chosen as the identi"cation method. On-line frequency
domain information was used for control of a #exible-link robot with varying payload in
reference [15]. The study reported in reference [16] identi"ed an ARMA model for
a two-link #exible manipulator. Time domain and frequency domain methods were
employed for the identi"cation of a single-link #exible manipulator [17]. A model analysis
was conducted for a two-link #exible manipulator in reference [18]. A state-space model of
a #exible arm was "rst derived by the RLS estimation of an ARMA model and then a model
reduction was conducted using the BR technique in reference [19]. In reference [20] the
transfer functions of a single-link #exible manipulator were "rst obtained using band-pass
"ltering and then the parameters of the transfer functions were estimated by non-linear
curve "tting. It has been noted that there are few reports about direct identi"cation of
a state-space model for a #exible manipulator. In this regard, this study addresses several
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critical issues that arise in the implementation of the ORSE algorithm in modelling of
a #exible manipulator system.

The second objective of the study is to develop a new model reduction technique. As the
system under study involves rigid-body motion and lightly damped structural modes,
identi"ed models are likely to be unstable. To overcome the aforementioned shortcomings
of the BR technique, the study proposes to conduct the model reduction in modal
co-ordinates. To quantify the mode dominance in the responses, a new index, referred to as
the modal response magnitude (MRM), is proposed. The importance of individual modes is
determined by the MRM index and the model is reduced accordingly.

The third objective of the study is to develop a new model updating scheme that is more
e$cient than the iterative LS model updating algorithm used in reference [6]. The low
e$ciency of this algorithm is due to simultaneously modifying all the elements of the system
matrices using the gradient information. For such a large dimension optimization problem,
the solution is likely to converge to a local minimum. Instead of updating all the parameter
matrices simultaneously, the proposed method recalculates either the input or output
matrix while keeping the other two unchanged. The calculation is done by solving
a non-iterative LS problem.

The remainder of this paper is organized as follows. Section 2 presents a short discussion
on mathematical modelling for the system under study. Section 3 brie#y introduces the
ORSE algorithm. Section 4 describes the experimental setup. Section 5 details
the development of the new model reduction and updating procedure. Section 6 presents
the results of the identi"cation experiments. Section 7 gives a brief conclusion.

2. MATHEMATICAL MODEL

An experimental set-up for a single-link #exible manipulator is shown in Figure 1. The
detail of the set-up is described in section 4. Many studies on mathematical modelling of
#exible manipulators have been reported. Although the present study intends to obtain
a system model through identi"cation, a brief discussion on mathematical modelling is
bene"cial for design of the experiment and interpretation of the results. To simplify the
discussion, the #exible arm is modelled as a cantilever beam clamped to the rotational axis
of the hub driven by a torque. The following assumptions are used.

(1) The link is uniform along its longitudinal direction, both in its mass distribution and
elastic properties.

(2) The transverse shear stresses and the change in the moment of inertia due to elastic
deformation are negligible, i.e., Euler's beam theory is applicable.

(3) The elastic deformation of the link is very small with respect to the hub motion.
(4) The link moves in a horizontal plane and hence, there is no e!ect of gravity.

Application of Lagrange's equations with respect to the hub motion results in

(I
h
#Ih)h

G#IThqqK#2qTI
q
qR hQ #qTI

q
qhG"q, (1)

where h is a scalar representing the angular position of the hub, q is a column vector
representing the generalized co-ordinates of the #exural deformation of the link, q is the
torque applied at the hub, I

h
is the e!ective moment of inertia of the hub including the

counterweight, Ih is the moment of inertia of the rigid arm and payload, I
q
is a square matrix

representing inertial e!ects of the distributed mass of the link and the payload mass due to
the #exibility of the link, Ihq is a column vector representing the inertial e!ects caused by



870 K. LIU AND X. SUN
coupling of the hub motion and the arm vibration. Application of Lagrange's equations
with respect to the generalized co-ordinates results in

Ihqh
G#I

(
qK!I

(
hQ 2q#K

q
q"0, (2)

where K
q
is a square matrix representing the e!ects of the distributed elasticity of the #exible

link. Equations (1) and (2) are a set of non-linear di!erential equations. By neglecting higher
order terms and assuming that damping is proportional to the velocity of the co-ordinates,
the equations can be formulated as a matrix equation,

M
(
/G#D

(
/Q #K

(
/"f, (3)

where

M
(
"C
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q
D, D

(
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2
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(
"C

0

0

0

K
q
D,

/"[h qT], f"[q 0 02]T,

where Dh is the damping coe$cient corresponding to the hub's angle h and D
i

is the
damping coe$cient corresponding to the ith generalized co-ordinate q

i
. It should be noted

that the dynamics of the motor and transmission train is not included in the above
equations.

Equation (3) can be transferred into a state-space equation by introducing a set of state
variables

xR (t)"A
c
x(t)#B

c
u (t), y (t)"C

c
x (t)#D

c
u (t), (4)

where x (t)3Rn]1 is the system state variable, A
c
3Rn]n is the state transition matrix,

B
c
3Rn]1 is the input in#uence matrix, C

c
3Rn]1 is the output in#uence matrix, D

c
3Rm]1 is

the direct transmission matrix, y (t)3Rm]1 is the output vector, n is the number of the state
variables or the model order, and m is the number of outputs. The notation Ri]j represents
the i]j real matrix space. For a digital control system, outputs are sampled at discrete times
and input u(t) is generated from a series of discrete signals. If the interval between two
consecutive sampling points is Dt, equation (4) can be represented by a discrete-time
state-space model,

x (k#1)"Ax(k)#Bu(k), y (k)"Cx(k)#Du(k), (5)

where

AOeAcDt, BOP
Dt

0

eA
c
qB

c
dq, COC

c
, DOD

c
,

x (k)Ox(kDt), u (k)Ou(kDt), y(k)Oy (kDt).

The state variables can be transformed into a new set of state variables through
a co-ordinate transformation

x(k)"Tz(k), (6)

where T3Rn]n is any non-singular matrix. Substitution of equation (6) into equation (5)
yields

z(k#1)"A1 z (k)#B1 u (k), y(k)"C1 z (k)#Du(k), (7)
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where

A1 "T~1AT, B1 "T~1B, C1 "CT. (8)

3. IDENTIFICATION ALGORITHM

This section presents a brief introduction to the ORSE algorithm [6]. In experiment, the
output y (k) is contaminated by unknown measurement noise w (k) giving the measured
output yJ (k),

yJ (k)"y (k)#w(k). (9)

This system identi"cation determines the matrices A1 , B1 , C1 , and D using the following data
samples from experiments:

yJ (k) and u(k) for k"1, 2,2,K,

where for a general multi-input/multi-output system, u (k)3Rr]1 and B or B1 3Rn]r,
D3Rm]r. The ORSE algorithm starts with forming two Hankel matrices Y3Rqm]d and
U3Rqr]d using data yJ (k) and u (k):

Y"[yJ
q
(1), yJ

q
(2),2, yJ

q
(d )]

"

yJ (1) yJ (2) 2 yJ (d)

yJ (2) yJ (3) 2 yJ (d#1)

F F } F

yJ (q) yJ (q#1) 2 yJ (K)

, (10)

U"[u
q
(1), u

q
(2),2, u

q
(d)]

"

u (1) u (2) 2 u (d)

u (2) u (3) 2 u (d#1)

F F } F

u (q) u (q#1) 2 u (K)

, (11)

where q and d"K!q#1 is the block row dimension and the column dimension of the
Hankel matrices respectively. If the output is free of measurement noise, the two Hankel
matrices are related by the matrix equation

Y"O
q
X#H

q
U, (12)

where O
q
3Rqn]n is referred to as the observability matrix which is of the form

O
q
"

C

CA

F

CAq~1

, (13)
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the matrix X3Rn]d is formed by the unknown state vectors

X"[x (1), x (2),2, x (d)], (14)

and the matrix H
q
3Rqm]qr is de"ned as

H
q
"

D 0 2 0

CB D 2 0

CAB CB 2 0

F F } 0

CAq~2B CAq~3B 2 D

. (15)

The observability range space of order q of the state-space model (5) is de"ned as the
range space of matrix O

q
, i.e.,

range(O
q
)"O

q
T"

CT

CAT

F

CAq~1T

"

C1

C1 A1

F

C1 A1 q~1

, (16)

for some non-singular matrix T. In order to extract the observability range space from the
relation (12), the part of the output Y that does not emanate from the state X needs to be
eliminated. In other words, the second term on the right-hand side of equation (12) must be
forced to be zero. To achieve this, a matrix UM3Rd]d is needed such that UM is normal to
U or UUM"0. A simple formulation of UM is given by

UM"I!UT (UUT)`U, (17)

where I3Rd]d is an identity matrix and the superscript # denotes the Moore}Penrose
pseudo-inverse. Postmultiplying equation (12) by UM results in

YUM"O
q
XUM. (18)

Now the observability range space can be extracted by a singular-value decomposition
(SVD) of the matrix YUM. In practice, observability range space is extracted by the SVD of
the matrix YYT!YUT(UUT)`(YUT)T to reduce the computational time. It is easy to see
that YUMYT"YYT!YUT(UUT)`(YUT)T. The transition matrix A1 and output matrix
C1 can be found from the extracted observability range space. Finally, the matrices B1 and
D can be obtained by a LS solution. It should be noted that the ORSE method is very
similar to the method named as system realization using information matrix (SRIM) in
reference [21] and the relation between the SRIM algorithm and the SMI algorithm is
given in reference [8]. A detailed development of the SMI algorithm can be found in
reference [9].

4. EXPERIMENTAL SET-UP

An experimental set-up used in this study is shown in Figure 1. The system consists of
a #exible arm, a bevel gear set, a direct current (DC) motor with the power ampli"er unit,



Figure 1. The experimental set-up.
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and PC. The arm is constructed from 6061-T6 aluminum}magnesium}silicon alloy. Its
dimension is length]height]width"1]0)051]0)003 m. The arm rotates in the
horizontal plane to eliminate the in#uence of gravity. A counterweight is used to reduce
unbalance of the arm.

The motor used in this experimental set-up is a permanent magnet DC motor with
a rated stall torque of 2)938 Nm. The DC motor has an integral tachometer to measure
motor shaft speed. To reduce noise in tachometer signal, an analog "lter is used.
A potentiometer is attached to the arm hub to measure its angular position. The control
input available is a voltage signal that is proportional to the motor current. A power
ampli"er circuitry converts the input voltage from the computer to motor current. The
maximum magnitude of the current is restricted to be 5 A.

Vibrations of the arm are measured using two sets of strain gauges or Wheatstone
bridges. The "rst bridge is located near the clamped end of the arm. The voltage signal from
this bridge is referred to as the base-gauge signal. The second bridge is placed in the middle
of the arm. The signal from this bridge is referred to as the middle gauge signal. The strain
gauge signals are ampli"ed before being fed into the computer.

The computer used to control the system is a Pentium II with a speed of 200 MHz.
A National Instruments PCI-MIO-16E-4 data-acquisition board is used for real-time
control. The broad has 16 single-ended or eight di!erential analog inputs, two analog
outputs, eight digital IOs, and two counters, and 12-bit resolution. The maximum sampling
rate of the board is 500,000 samples/s. LabWindows by National Instruments is used for
programming.

Totally, there are four system outputs, namely, the angular-position of the arm hub, the
angular speed of the motor shaft, the base gause signal (the arm de#ection near the clamped
end), and the middle gauge signal (the arm de#ection at the middle location). The
experimental set-up is, therefore, a system with a single input and four outputs, i.e., r"1
and m"4. It is also noted that the direct transmission matrix D is zero because the outputs
are not directly related to the input.
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5. MODEL REDUCTION AND UPDATING

In this section, a new procedure is developed to reduce the identi"ed model and improve
the accuracy of the reduced order model. The main feature of the proposed procedure is that
the model reduction and updating are conducted in modal co-ordinates. An
eigendecomposition is conducted on the identi"ed transition matrix

A1 "WKW~1, (19)

where

W"[t
1

t
2
2t

n1~1
t
n1

t
n1`1

2t
n
]3Cm]n

is the eigenvector matrix and

K"diag[j
1

j
2
2j

n1~1
j
n1

j
n1`1

2j
n
]3Cm]n

is the eigenvalue matrix. The notation Ci]j represents the i]j complex matrix space. It is
assumed that there are n

1
/2 pairs of complex eigenvalues are eigenvectors, i.e., j

i`1
"j*

i
,

t
i`1

"t*
i

for i"1, 3,2,n
1
!1, where the superscript * denotes complex conjugate. The

remaining n!n
1

eigenvalues and eigenvectors are real. De"ning a set of new states in
modal co-ordinates as

g (k)"W~1z(k), (20)

the state-space model becomes

g (k#1)"Kg(k)#B< u(k), yL (k)"CK g (k), (21)

where

B<"W~1B1 "[bK
1

bK
2
2bK

n1~1
bK
n1

bK
n1`1

2bK
n
]T3Cn]1,

C<"C1 W~1"[cL
1

cL
2
2cL

n1~1
cL
n1

cL
n1`1

2cL
n
]T3Cm]n.

It is noted that complex quantities appear as pairs, i.e., bK
i`1

"bK *
i

and cL
i`1

"cL *
i

for
i"1, 3,2, n

1
!1.

An important question is how to distinguish the system modes from the computational
modes. It is reasonable to assert that the computational modes have insigni"cant
contribution to the total system response. To characterize the contribution of individual
modes to the outputs, a quantitative measure is needed. Two indices are introduced in
reference [1] to quantify the contribution of individual modes to a pulse response. The
modal amplitude coherence (MAC) measures the correlation between the pulse responses
extracted from the data and the pulse response generated by the identi"ed model. The mode
singular value (MSV) measures the magnitude of the pulse response generated by the
identi"ed model. Speci"cally, the MSV is de"ned as

MSV
i
"JDcL

i
D (1#Dj

i
D#Dj2

i
D#2#DjK~2

i
D ) DbK

i
D . (22)

A mode with a large MSV is considered to have a signi"cant contribution to the pulse
response. The computational modes and insigni"cant structural modes are expected to have
small MSVs. The MAC or MSV may be misleading because it is based on the pulse
response. For example, the pulse response of a mode with heavy damping or Dj

i
D;1 may

die quickly even if the mode is one of the signi"cant system modes when the system is
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persistently excited. To overcome this problem, an alternative measure is proposed in this
study. The system response is a sum of the modal responses, i.e.,

yL (k)"
n1~1
+

i/1,3

yL gi (k)#
n
+

i/n1`1

yL gi (k), (23)

where yL gi (k)3Rm]1 is the response of the ith mode. For the ith complex mode, yL gi (k) is
evaluated by

C
g
i
(k#1)

g*
i
(k#1)D"C

j
i

0

0

j*
i
D C

g
i
(k)

g*
i
(k)D#C

bK
i

bK *
i
D u (k),

yL gi (k)"[cL
i

cL *
i
] C

g
i
(k)

g*
i
(k)D , i"1, 3,2, n

1
!1. (24)

For the ith real mode, yL gi(k) is evaluated by

g
i
(k#1)"j

i
g
i
(k)#bK

i
u(k), yL gi (k)"cL

i
g
i
(k), i"n

1
#1,2, n. (25)

The maximum contribution of the ith mode to the total response can be evaluated by
a modal response magnitude (MRM) de"ned as

MRM
i
"maxA

K
+
k/1

DyL gi(k) D/KB, i"1, 3,2, n
1
#1, n

1
#1,2, n. (26)

The MRM computes the largest means of the absolute modal responses to the actual input.
The modes with small MRMs can be considered to be insigni"cant. A reduced order model
can be obtained by eliminating the matrix elements that correspond to the insigni"cant
modes. The MRMs are more meaningful than the Hankel singular values used in the BR
technique because each MRM is evaluated using its modal response to the actual input
while a Hankel singular value measures the impulsive response magnitude of the
corresponding mode. With the MRMs, a knowledge of the system dynamics from an
analytical model or modal testing can be easily incorporated in decision making.

The reduced model has a triplet

K"diag[j
1

j
2
2j

n{1~1
j
n{1

j
n{1`1

2j
n{
]3Cn@]n@, (27)

B<"[bK
1

bK
2
2bK

n{1~1
bK
n{1

bK
n{1`1

2bK
n{
]3Cn@]1, (28)

C<"[cL
1

cL
2
2 cL

n{1~1
cL
n{1

cL
n{1`1

2cL
n{
]3Cm]n@, (29)

where n@(n denotes the order of the reduced model and n@
1
denotes the number of complex

modes. The reduced order model is expected to be less accurate than the original model.
This problem can be corrected by recalculating the reduced matrices B< or C< . For example,
a new reduced input matrix B< can be determined by minimizing

min
B<

K
+
k/1

EyJ (k)!yL (k)E
2

subject to K given by (27) and C< given by (29).
(30)
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Such a minimization problem can be solved by the following procedure. Note that the
reduced input matrix B< is of the form

B<"

bK
1

bK
2
F

bK
n{1~1
bK
n{1

bK
n{1`1
F

bK
n{

"

bK R
1
#jbK I

1
bK R
2
!jbK I

1
F

bK R
n{1~1

#jbK I
n{1~1

bK R
n{1~1

!jbK I
n{1~1

bK
n{1`1
F

bK
n{

, (31)

where bK R
i

and b) I
i

are the real part and the imaginary parts of b)
i
for i"1, 3,2, n@

1
!1,

respectively, and j"J!1. The response corresponding to a unit of bK R
i

is computed by

gR
i
(k#1)"KgR

i
(k)#IR

i
u (k),

y
b
K R
i
(k)"C< gR

i
(k), i"1, 3,2, n@

1
!1, (32)

where IR
i
3Rn@]1 and its (2i!1)th and 2ith elements are unity and the rest of the elements

are zero. The response corresponding to a unit of bK I
i
is computed by

gI
i
(k#1)"KgI

i
(k)#II

i
u(k) ,

y
bK Ii
(k)"C< gI

i
(k), i"1, 3,2, n@

1
!1, (33)

where II
i
3Rn@]1 and its (2i!1)th element is j and 2ith element is !j and the rest of the

elements are zero. The response corresponding to a unit of bK
i
for i*n@

1
#1 is computed by

g
i
(k#1)"Kg

i
(k)#I

i
u (k), y

bK i
(k)"C< g

i
(k), (34)

where I
i
3Rn@]1 and its ith element is unity and the rest of the elements are zero. Now, the

linear relationship between y (k) and the elements of B< is given as

yJ (k)"
n{i~1
+

i/1,3

[y
bK Ri

(k)bK R
i
#y

bK Ii
(k)bK I

i
]#

n{
+

i/n{1`1

y
bK i
(k)bK

i

"U(k)H, (35)

where U(k)3Rm]n@ and H3Rn@]1 are de"ned as

H (k)"[y
b
K R
1
(k) y

b
K I
1
(k)2y

b) Rn{1~1
(k) y

b) In{1~1
(k) y

b) n{1`1
(k)2y

b
K
n{
(k)],

H"[bK R
1

bK I
1
2bK R

n{1~1
bK I
n{1~1

bK
n{1`1

2bK
n{
] (36)

respectively. The LS solution for the elements of the matrix B< is

H"U`yJ , (37)
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where U3R(K]m)]n@ and yJ 3R(K]m)]1 are of the forms

U"

U(1)

U(2)

F

U(K)

and yJ "

yJ (1)

yJ (2)

F

yJ (K)

(38)

respectively. In a similar manner, a new output matrix C< can be computed by solving the
following minimization problem:

min
C<

K
+
k/1

EyJ (k)!yL (k)E
2

subject to K given by (27) and B< given by (28).
(39)

6. IDENTIFICATION EXPERIMENTS

This section presents the experiment design, data preprocessing, identi"cation results,
and observations based on the results. Design of experiments involves selection of sampling
frequency, excitation methods, and exciting signals.

In a previous study [20], it was found that the excitation generated by the motor
can induce up to the third vibratory mode of the arm. If the arm is modelled as a
cantilever beam, its "rst three natural frequencies are 8)90, 24)58 and 48)20 Hz respectively.
Therefore, the sampling frequency was chosen to be 300 Hz in order to capture the
signi"cant modal information. Although the computer system is capable of achieving
a higher sampling frequency, a further increase of the sampling frequency will result in
a drastic increase of the data and computational time. When the sampling frequency is
chosen to be too high, it may cause the eigenvalue of a lightly damped mode to move too
close to the unit circle.

Two di!erent experiments were conducted, namely, open-loop and closed-loop
experiment. In the open-loop experiment, an exciting command is generated in the
computer and sent to the power ampli"er through the D/A channel. Exciting signals must
be properly chosen to provide su$ciently rich excitation over the frequency band of the
system dynamics. Four types of signals were tested: square waveform, varying square
waveform, periodic random, and random signal. In theory, random signal is an ideal choice
because it is persistently exciting. However, for the system under study, it was found that the
responses to a random input were quite noisy and contained many spikes. When such data
were used in identi"cation, the models obtained have larger prediction errors than those
obtained using the data from a square or varying square waveform. It is believed that the
random excitation magni"es the system non-linearities such as gear backlash and Coulomb
friction due to frequent sudden changes in input magnitude and direction. After many trails,
it was found that the varying square waveform was a best choice for the present system. The
varying square waveform consists of a series of positive and negative pulses. The magnitude
of the pulse was prescribed and its period randomly varied between 0)25 and 1)5 s. Figure 2
shows a typical varying square waveform. In what follows, only the results with the
excitation of the varying square waveforms are reported.

In the closed-loop experiment, the angular position is fed back and compared with
a reference position. The exciting signal is proportional to the error between the reference
position and actual position. The reference position was speci"ed in the following way: In
the beginning, a reference of 3 v (353 of hub rotation) was used until the actual angular



Figure 2. Varying square waveform used as the exciting command in the open-loop experiment.

Figure 3. Resultant exciting command used in the closed-loop experiment.
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position exceeded 3 v. As soon as the actual angular position exceeded 3 v, the reference was
changed into !3 v (!353 of hub rotation) and remained so until the actual angular
position became less than !3 v. As soon as the measured angular position became less than
!3 v, the reference was reverted to 3 v. The process continued until it was terminated. Such
an exciting strategy was devised in order to have a su$cient excitation while the range of
hub rotation is limited. Figure 3 shows a typical resultant exciting command from the
closed-loop experiment.

The measured outputs were preprocessed in the following ways. The sampled
outputs were passed through a second order Butterworth "lter with a cut-o! frequency
of 50 Hz. The bias in each of the measured outputs was removed. The strain gauge signals
were forced to be zero mean. The initial outputs were forced to be zero, i.e., yJ (1)"0. All
the four outputs were scaled to ensure that their maximum magnitudes are equal to
the maximum magnitude of the input. The scaling is needed in order to avoid the
discrimination according to the data magnitudes in the computation [6]. The "nal
identi"ed output matrix C< or C1 were obtained through an unscaling operation using the
scaling factors.
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The identi"cation results were evaluated in several ways. The ratio of the
root-mean-squared (RMS) prediction errors is de"ned as

d
i
"

RMS(yJ
i
!yL

i
)

RMS(yJ
i
)

i"1,2, 4 and d1 "
4
+
i/1

d
i
/4, (40)

where the subscripts 1, 2, 3, and 4 denote the angular position, angular speed, base gauge
signal, and middle gauge signal respectively. The natural frequencies and damping ratios
are computed from the eigenvalues of the identi"ed transition matrix A1 . The ith natural
frequency f

i
and damping ratio f

i
are related to the ith complex eigenvalue by

j
i
"e(~fi`jJ1~f2i )2nfi

Dt for i"1, 3,2, n
1
!1.

In addition, the identi"ed models were validated in two ways. In a data projection
validation, the duration of the simulated response was twice as long as that of the data used
in the model identi"cation. The data projection validation checks the model's ability to
generate the responses that were not used in the model identi"cation. In a data matching
validation, the magnitude of the input applied to a model was di!erent from that of the
input used in the model identi"cation. The data matching validation tests the linearity of the
system and the adaptability of the identi"ed model.

Knowledge of the mathematical model is helpful to determine a minimum model order.
The system dynamics includes the e!ects of the #exible arm and motor plus the
transmission train. For the "rst three vibratory modes of the arm, six modes are needed. The
motor and transmission system may be represented by two or three modes depending on
the extent of modelling. Therefore, the minimum order of the model is 8 or 9. However, the
non-linearities of the system introduce additional computational modes. If the model order
is not su$ciently large, some signi"cant structural modes may not be captured. On the
other hand, the singular values of the matrix YUMYT present some information about the
dynamics [22]. Shown in Figure 4 are the "rst 50 singular values of the matrix YUMYT

formed by data set 1 in Table 1. It is seen that there are several visible plateaus up to the
25th singular value. In identi"cation, n"25 was considered as an upper bound for the
model order.

The identi"cation computation was conducted using MATLAB. The data length K was
chosen to be K"1500 or the duration of the data was 5 s. As a general guideline, the block
Figure 4. The "rst 50 singular values of matrix YYT!YUT(UUT)`(YUT)T using data set 1.



TABLE 1

Data sets used in identi,cation

Set no. Testing conditions

1 Open loop, input level"1)5 v
2 Open loop, input level"2 v
3 Closed loop, proportional gain"0)7
4 Closed loop, proportional gain"1

TABLE 2

Prediction errors of the identi,ed models using data set 1

n d
1

d
2

d
3

d
4

dM No. of real j
i
/stable

13 0)1238 0)2608 0)3315 0)6212 0)3343 1/Ns, j
13
"1)0008

14 0)1330 0)2412 0)2754 0)5192 0)2922 2/>
15 0)1118 0)2524 0)3435 0)6367 0)3361 1/N, j

13
"1)0006

16 0)1013 0)2316 0)3108 0)5658 0)3024 2/>
17 0)0768 0)2454 0)3193 0)5579 0)2999 3/N, j

17
"1)0013

18 0)0655 0)2351 0)2775 0)5288 0)2767 2/>
19 0)1456 0)2506 0)3030 0)5577 0)3142 1/N, j

19
"1)0010

20 0)0456 0)1901 0)2966 0)5492 0)2704 2/N, j
20
"1)0011

sThere is one real eigenvalue and the model is not stable.
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row dimension q of the Hankel matrices must be greater than the model order, i.e., q'n. In
the results reported below, q"5n was used and then d"K!q#1.

Numerous experiments were carried out [23]. Limited by the space available, only
selected results from four sets of the data are presented below. The information of the data
sets is given in Table 1. Table 2 lists some results using data set 1. Among the four outputs,
the identi"ed models give the best "t for the angular position and the worst "t for the middle
gauge signal. The identi"ed models tend to be unstable and the unstable models contain one
real eigenvalue that is greater than unity. Figure 5 shows the data projection validation
using the 13th order model. In all the "gures used, solid lines represent the measured
outputs and dotted lines represent the simulated ones. The display duration is divided into
two periods and the data of the "rst 5 s period were used in identi"cation. It is noted that the
simulated angular position deviates from the measured one after 5 s. For the strain gauge
signals, the simulated outputs agree well with the measured ones during the "rst 5 s and
show a visible departure from the measured ones after 5 s. The main reason for mismatching
in the second period is that one of the identi"ed rigid modes is unstable.

Table 3 lists some results using data set 2. Compared with the results using data set 1, the
models seem to have poorer "ts for the angular position and velocity and better "ts for the
strain gauge signals. Figure 6 shows the data projection validation using the 14th order
model (to save space, only two outputs are shown). This model is stable. It is seen that the
simulated outputs still follows the measured ones in the second period.

Figure 7 shows a data matching validation where the input of data set 1 was applied to
the 14th order model identi"ed using data set 2. The model is capable of generating the
strain gauge signals that agree with the measured ones. For the angular position, there is
a visible disagreement between the simulated one and measured one. More experiments



Figure 5. Comparison of the measured outputs and simulated ones by the 13th order model using data set 1:
(**), measured; () ) ) ) ) )), simulated. (a) Angular position; (b) angular velocity; (c) base de#ection; (d) middle
de#ection.

TABLE 3

Prediction errors of the identi,ed models using data set 2

n d
1

d
2

d
3

d
4

dM No. of real j
i
/stable

13 0)3041 0)2888 0)2652 0)4780 0)3340 1/N, j
13
"1)0012

14 0)1755 0)2476 0)2424 0)4571 0)2806 2/>
15 0)2817 0)2528 0)2356 0)4842 0)3136 1/N, j

15
"1)0010

16 0)1589 0)2343 0)2185 0)4129 0)2561 2/>
17 0)2396 0)2474 0)2434 0)4477 0)2945 1/N, j

17
"1)0011

18 0)1766 0)2402 0)2352 0)4412 0)2733 2/>
19 0)2846 0)2489 0)2424 0)4853 0)3153 1/N, j

19
"1)0011

20 0)1733 0)2248 0)2089 0)3914 0)2496 2/N, j
20
"1)0001
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have shown that when the input with a magnitude of 1 v was applied to this model, the
simulated angular position disagrees with the measured one more visibly. This indicates
that in the open-loop experiment, the system exhibits some degree of nonlinearity.

The results from data set 4 are given in Table 4. In general, the models identi"ed in the
closed-loop experiments have smaller prediction errors than those from the open-loop
experiments, especially for the angular position and velocity. The models tend to be stable.
For an unstable model, there is a pair of complex eigenvalues that are outside the unit circle.
Figure 8 shows a data projection validation using the 13th order model. The model is
capable of predicting the outputs beyond the length used for the model identi"cation.
Figure 9 gives a comparison for the 20th order model. It is noted that, even if the identi"ed
model is slightly unstable, the simulated outputs still follow well the measured ones.



Figure 6. Comparison of the measured outputs and simulated ones by the 14th order model using data set 2:
(**), measured; () ) ) ) ) )), simulated. (a) Angular position; (b) base de#ection.
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Figure 10 presents a data matching validation. In this case, the input from data set 3 was
applied to the 13th order model identi"ed using data set 4. It is seen that, although there is
magnitude mismatch, the simulated outputs follow the variations of the measured ones well.

As the "rst example of the model reduction, consider the 13th order model using data set
2. This is an unstable model. To force it to become stable, the unstable real eigenvalue j

13
was modi"ed to be j

13
"1. Then the MRMs for all the modal responses were evaluated.

The MRMs and their ranking are given in Table 5. The corresponding MRVs and their
ranking are also given for comparison. In addition, the table lists the corresponding natural
frequencies and damping ratios for the complex modes. According to the MRMs, a reduced
model of order 7 should retain modes: 1/2, 7/8, 9/10, 13. The prediction errors of this
truncated model are given in Table 6. Using the proposed updating algorithm to recalculate
the input matrix results in an updated reduced order model. As indicated in Table 6, the
updated model is able to achieve a better model accuracy than the original one in terms of
the average prediction error d1 . A comparison of the outputs for the three di!erent models is
given in Figure 11. If the model was reduced by the MSV ranking, a model of order 7 should
contain modes: 1/2, 5/6, 7/8, 13. It is noted that a pair of complex modes 9/10 was
considered as less important by the MSVs. This pair of complex modes is associated with
the motor dynamics. Its pulse response dies quickly because the modes are heavily damped.



Figure 7. Comparison of the measured outputs and simulated ones in the data matching validation. The input
of data set 1 was applied to the 14th order model using data set 2: (**), measured; () ) ) ) ) )), simulated. (a) Angular
position; (b) base de#ection.

TABLE 4

Prediction errors of the identi,ed models using data set 4

n d
1

d
2

d
3

d
4

dM No. of real j
i
/stable

13 0)0737 0)1759 0)2346 0)4460 0)2325 1/>
14 0)0697 0)1783 0)2554 0)5050 0)2521 0/>
15 0)0825 0)1876 0)2588 0)5208 0)2624 1/N, j

13,14
"1)0001$j0)01541

16 0)1319 0)1776 0)3328 0)6112 0)3134 0/N, j
15,16

"1)0004$j0)01546
17 0)0844 0)1811 0)2739 0)4897 0)2573 1/>
18 0)0631 0)1777 0)2287 0)4629 0)2331 0/N, j

17,18
"1)0001$j0)01893

19 0)0657 0)1699 0)2540 0)4780 0)2419 1/>
20 0)0682 0)1717 0)2240 0)4589: 0)2307 0/>, j

19,20
"1)0004$j0)01959
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The prediction errors for the reduced model and updated model based on the MSVs are
also listed in Table 6. The errors in the reduced model are large and the updating scheme
fails to improve the model.



Figure 8. Comparison of the measured outputs and simulated ones by the 13th order model using data set 4:
(**), measured; () ) ) ) ) )), simulated. (a) Angular position; (b) base de#ection.
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In the second example, the 19th order model using data set 2 was tested. Table 7 lists the
MRMs and MSVs for all the modes. According to the MRMs, a model of order 11 should
retain modes: 5/6, 11/12, 13/14, 15/16, 17/18, 19. Table 8 lists the prediction errors of the
reduced model and the model with a recalculated input matrix respectively. It is seen that
the updated model is better than the original model. If the MSVs are used to select the
dominant modes, the modes that should be kept are 1/2, 5/6, 9/10, 11/12, 13/14, 19. It is
noted that the pair of complex modes 1/2 is considered to be important. By examining the
natural frequencies, this is known that this pair of complex modes is associated with the
third vibratory mode of the arm. An extensive experiment has indicated that the third
vibratory mode has an insigni"cant contribution to the total response. However, this set of
modes has a dominant presence in a pulse response because of a low damping and
high-frequency nature. As indicated in Table 8, the updated model reduced by the MSV
ranking is unacceptable. The prediction errors for the angular position and velocity cannot
be improved e!ectively because the pair of complex modes 15/16 has been excluded.

If the model order is further reduced to 7 according to the MRMs, the reduced model will
not contain the dynamics of the second vibratory mode represented by the pair 5/6.
Although this seventh order model still represents the basic system dynamics, it may not be
acceptable for controller design. This indicates a limitation of the MRM index. In such



Figure 9. Comparison of the measured outputs and simulated ones by the 20th order model using data set 4:
(**), measured; () ) ) ) ) )), simulated. (a) Angular position; (b) base de#ection.
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a case, a prior knowledge about the system dynamics is useful to make a decision. Table 8
lists the prediction errors for model II which consists of modes: 5/6, 11/12, 15/16, 19. These
modes were selected based on both their MRM values and modal information. As indicated
in Table 8, the updated model achieves a model accuracy that is close to that of the original
model. For the angular position, the model "ts the measured value even better than the
original model. A comparison of the frequency responses for the original model, updated
model I, and updated model II is given in Figure 12. The original model has to use more
modes to represent the dynamics around the "rst two natural frequencies of the arm. The
frequency response of updated model I shows a sharp peak at the second natural frequency
and two peaks around the "rst natural frequency. Although the frequency response of
updated model II appears simpler, it still captures the main characteristics of the dynamics
in the lower frequency region.

The models from the closed-loop experiments were also used to study the model
reduction. As an example, Table 9 gives the MRMs and MSVs for the 15th order model
using data set 4. According to the MRMs, a reduced model of order 7 should retain modes:
3/4, 7/8, 13/14, 15. The mean prediction error for the updated model is slightly greater than
that for the original model (Table 10). In general, in the closed-loop experiments, although
recalculation of the input matrix for a properly reduced model makes the prediction errors



Figure 10. Comparison of the measured outputs and simulated ones in the data matching validation. The input
of data set 3 was applied to the 13th order model identi"ed using data set 4: (**), measured; () ) ) ) ) )), simulated.
(a) Angular position; (b) base de#ection.

TABLE 5

Comparison of the MRMs and MS<s for the 13th order model given in ¹able 2

Modes MRMs/rank MSVs/rank f
i

f
i

1/2 0)2085/4 1)1269/4 22)39 0)0477
3/4 0)0848/6 0)9515/5 18)30 0)0244
5/6 0)0760/7 1)2110/2 9)623 0)0174
7/8 0)4110/2 1)1515/3 8)120 0)0784
9/10 0)4822/1 0)5293/7 0)3578 0)7881
11/12 0)1789/5 0)5597/6 3)121 0)1390
13 0)3593/3 1)3696/1 * *
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smaller, the updated model accuracy is not as good as its original one. If the MSVs are used,
a model of order 8 contains modes: 3/4, 5/6, 7/8, 13/14. In this case, mode 15 is excluded.
This mode is associated with the rigid-body motion. As expected, the prediction errors from
the updated model (model II in Table 10) are unacceptable.



Figure 11. Comparison of the measured outputs and outputs generated by the di!erent models: (**),
measured; () ) ) ) ) )), original model; (* )* )*), reduced model; (} } } }), updated model. (a) Angular position; (b)
base de#ection.

TABLE 6

Prediction errors of the original, reduced, and updated models for the model given in ¹able 5.
Model I consists of modes: 1/2, 7/8, 9/10, 13. Model II consists of modes: 1/2, 5/6, 7/8, 13

Model n d
1

d
2

d
3

d
4

dM

Original 13 0)3041 0)2888 0)2652 0)4780 0)3340
I, reduced 7 0)6223 0)2990 0)4195 0)5587 0)4749
I, updated 7 0)1048 0)2745 0)2778 0)5448 0)3005
II, reduced 7 0)7559 0)8535 0)4307 0)5294 0)6424
II, updated 7 0)6122 0)7766 0)3897 0)5164 0)5737
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7. CONCLUSION

The ORSE algorithm has been applied to control-model identi"cation for the system that
involves both rigid-body motion and structural vibration. The study has successfully
addressed several important issues in the experiment.



TABLE 7

Comparison of the MRMs and MS<s for the 19th order model given in ¹able 3

Modes MRMs/rank MSVs/rank f
i

f
i

1/2 0)0880/8 1)1328/3 46)66 0)0232
3/4 0)0316/9 0)7920/7 22)97 0)0156
5/6 0)1468/6 0)9688/5 21)38 0)0483
7/8 0)0076/10 0)4042/10 17)44 0)0130
9/10 0)1134/7 1)0399/4 10)62 0)0287
11/12 0)1725/4 1)1668/2 8)917 0)0289
13/14 0)3041/3 0)8602/6 6)974 0)1201
15/16 0)5053/1 0)5420/8 0)424 0)8407
17/18 0)1648/5 0)4594/9 2)5480 0)1978
19 0)4321/2 1)5018/1 * *

TABLE 8

Prediction errors of the original, reduced, and updated models for the model given in ¹able 7.
Model I consists of modes: 5/6, 11/12, 13/14, 15/16, 17/18, 19. Model II consists of modes:

5/6, 11/12, 15/16, 19. Model III consists of modes: 1/2, 5/6, 9/10, 11/12, 13/14, 19

Model n d
1

d
2

d
3

d
4

dM

Identi"ed 19 0)2846 0)2489 0)2424 0)4853 0)3153
I, reduced 11 0)5818 0)2680 0)2562 0)5941 0)4250
I, updated 11 0)1096 0)2627 0)2515 0)5161 0)2850
II, reduced 7 0)5799 0)4065 0)7688 0)8387 0)6485
II, updated 7 0)0900 0)3115 0)3717 0)6369 0)3525
III, reduced 11 0)7191 0)9470 0)3810 0)5504 0)6494
III, updated 11 0)6124 0)7921 0)3844 0)5405 0)5823
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1. With regard to the methods to excite the system, it has been found that in the
open-loop experiment, the range of hub motion is di$cult to be regulated and the responses
are a!ected by the system non-linearities. On the other hand, the closed-loop experiment
tends to minimize non-linear in#uence and allows to use large input level. In general, the
data from the closed-loop experiments result in more accurate models than those from the
open-loop experiment.

2. For the system under study, a proper selection of exciting signal is important. The
study has shown that the varying square waveform is the best choice among the four
di!erent exciting signals. Such an excitation can fully excite both the rigid-body motion and
structural vibration while keeping the non-linear e!ects minimum.

3. Two model validation methods have been used. The data projection validation checks
a model's ability to generate the responses that were not used in the model identi"cation.
The data matching validation tests the linearity of the system and the adaptability of the
identi"ed model.

4. Several data preprocessing operations have been used. The study has shown that these
operations are critical to ensure a successful application of the ORSE algorithm.

A model reduction technique had been proposed and successfully applied. An index
named as MRM index has been proposed to quantify the contribution of individual modes.



Figure 12. Comparison of the frequency responses for the di!erent models: (**), original model; () ) ) ) ) )),
updated reduced model I; (* )* )*), updated reduced model II. (a) Angular position; (b) base de#ection.

TABLE 9

Comparison of the MRMs and MS<s for the 15th order model given in ¹able 4

Modes MRMs/rank MSVs/rank f
i

f
i

1/2 0)0788/8 0)8999/7 23)02 0)0116
3/4 1)6633/4 2)3363/4 21)55 0)0314
5/6 0)9271/5 2)6721/3 9)444 0)0124
7/8 2)1342/3 2)8573/1 8)330 0)0275
9/10 0)4636/6 0)9102/6 1)871 0)0507
11/12 0)1542/7 0)3257/8 0)737 0)0571
13/14 4)7104/1 2)7572/2 0)1926 0)4582
15 3)9447/2 1)1483/5 * *
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The study has shown that the new measure is reliable when the order of an original model is
low or moderate. When the model order is high, determination of the mode dominance
should be based on both the MRM values and modal information available. Ranking the
mode dominance according to the modal responses provides a more meaningful insight to



TABLE 10

Prediction errors of the original, reduced, and updated models for the model given in ¹able 9.
Model I consisted of modes: 3/4, 7/8, 13/14, 15. Model II consisted of modes: 3/4, 5/6, 7/8,

13/14

Model n d
1

d
2

d
3

d
4

dM

Original 15 0)0825 0)1876 0)2588 0)5208 0)2624
I, reduced 7 0)0685 0)1898 0)4037 0)6509 0)3282
I, updated 7 0)0806 0)2121 0)2799 0)6013 0)2935
II, reduced 8 0)2481 0)2965 1)1257 1)4886 0)7897
II, updated 8 0)3106 0)3021 0)5959 0)7664 0)4938
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the model than the balanced realization technique. In modal co-ordinates, it is easy to
modify a model to ensure model stability.

A model-updating scheme has been proposed. The experimental study has indicated that
if the truncated model preserves the main modal information, the proposed updating
scheme can e!ectively improve the accuracy of a reduced order model. If a model is not
properly reduced or some of the signi"cant system modes are missing, the method cannot
produce a satisfactory result.
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